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Density Problems Involving pr( n) 

By Patrick J. Costello 

Abstract. Lower bounds on the density of zeros of Pr( n) are provided for certain values of r. 

If n is a nonnegative integer, define pr(n) as the coefficient of x in IIl (1 - Xn)r; 

i.e., 

00 00 

LI (1 - Xn) = 2 pr(n)Xn. 
n-1 n=O 

Two very important number-theoretic functions occur as particular choices of r. 
p_ l(n) is the ordinary partition function (usually written as p(n)) and p24(n - 1) is 
the Ramanujan T-function (i.e., T(n) = p24(n - 1)). The only known explicit for- 
mulas for pr(n) are those for p1 (n) and p3(n) given by the following classical results: 

Euler's pentagonal number theorem says 

00 00 

(1) 171 (1 - xn) = 1 + 
2 

(_l)nX(3n2-n)/2 
n=1 n= 1 

An immediate consequence of Jacobi's triple product identity is 

00 00 

(2) z (1 - xn) = 2 (-1)X(2n + l)x(n2+n)/2. 
n=1 n=O 

The functions pr(n) enjoy many interesting congruence properties. Ramanujan 
[12] was able to show the following special congruences for the partition function: 

(3) p(5n + 4)-O (modS), 

(4) p(7n + 5) = O (mod7), 

(S) p(lln + 6)-O0 (modll). 

Further work on the partition function has been done by Watson [13] and Atkin [2]. 
Bambah proved the following congruences for (n): 

T(n) =-n9(n) (mod 5 2) 

T(n) -n03(n) (mod7), 
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where ak(n) is the sum of the kth powers of the divisors of n. Newman [10] proved 
the following theorem that gives congruence properties for infinitely many functions 

pr(n): 

THEOREM. Let r = 4, 6, 8, 10, 14, 26. Let p be a prime greater than 3 such that 
r(p + 1) 0 (mod 24). Set A = r(p2 -1)/24. Then, for all R r (mod p), 

PR(np + A) =0 (modp). 

NoticethatforR = -1 thechoicesr = 4,p = 5; r = 6,p = 7; r = 10,p = 11 give 
the Ramanujan congruences (3), (4) and (5). 

From the known congruence properties, many people were led to investigate the 
asymptotic density of values pr(n) that are divisible by some fixed modulus m. If we 
let 

dr(m) = lim infx- 1, 
x -oo n x 

Pr(n)=O (mod m) 

then, in particular, congruence (3) says that d- (5) > 1/5. For the partition func- 
tion, Atkin [3] and Klove [6] have made numerous improvements on the density 
estimates. However, numerical evidence by MacLean [8] seems to indicate that the 
proven estimates might be able to be improved even further. 

By reconsidering Eqs. (1) and (2), it is easy to see that dl(m) = 1 and d3(m) = 1 
for any modulus m. This is primarily because p l(n) = 0 and p3(n) = 0 for almost all 
n. Hence the density of zeros of pr(n) gives a lower bound on dr(m) for all m. The 
aim of this paper will be to provide some information about the density of zeros of 
certain pr(n). Since p l(n) represents the number of partitions of n, it will never 
vanish. It is still an open question (generally attributed to D. H. Lehmer) as to 
whether T(n) is ever 0. It is known that for n < 113, 740, 236, 287, 998 T(n) # 0 [7]. 
From a quick glance at Newman's table of values of pr(n) [11], one might also 
conjecture that pr(n) # 0 for r = 5, 7, 9, 11, 12, 13, 16. On the basis of unpublished 
numerical tabulation performed by A. 0. L. Atkin and M. Newman, values of n 
have been found for which pr(n) = 0, r = 5, 7, 9, 11. This implies that pr(n) vanishes 
infinitely often for these values. Our work will concentrate on pr(n) with r = 2, 4, 6, 
8, 10, 14, 26. We start with the definition of the density of zeros of pr(n). 

Definition. Sr = limx, infx- 'n-xX;P(n)=O 1 represents the density of zeros of 
pr(n). 

Our first result gives a weak statement about the density of zeros of pr(n). 

THEOREM 1. If r = 2, 4, 6, 8, 10, 14, 26 and q is a prime greater than 3 such that 
r(q + 1) _ 0 (mod 24), then Sr > I/(q + 1). 

Proof. Under the given hypotheses, Newman [9] has shown that 

(6) pr(nq + A) = (-q)(r-2)/2pr(n/q) 

for all nonnegative n and A = r(q2 - 1)/24. Since pr(a) = 0 when a is not integral, 
if we let n = qm + k with k = 1, 2,. . . ,q- Iin Eq. (6), we get 

(7) pr(q2m + qk + A) = 0. 
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This gives us q - 1 distinct residue classes mod q2 which are zeros of pr(n). Thus far 
we have 3r 2 (q - l)/q2. If we now let n = q(q2m + qk + A) in Eq. (6), then we 
get p(q4m + q3k + q2A + A) = (-q)(r-2)/2pr(q2m + qk + A) = 0 by Eq. (7). Con- 
tinuing to multiply the new zeros obtained by q and resubstituting into Eq. (6) leads 
us to the fact that for any t > 1 

(8) P (q2tm + q2t-lk + q2t- 2A + q2t-4A + +q2A + A) = 0 

for all m and k = 1, 2,..., q - 1. Hence we have q - 1 distinct residue classes 
mod q2t which are zeros of pr(n). We will now show that the new zeros produced by 
Eq. (8) are distinct from all the zeros obtained previously. 

(i) Suppose that q2tm1 + q2t-lkl + q2t-22A + ... +q2A + A = q2m2 + qk2 + A 
for some m M2 E Z and k , k2 E{1, 2,. . . ,q - 1). Then qk2 = 
q2(q2t-2m1 + q2t-3kI + *-. +A - Mi2), which would imply that qI k2. But this 

contradicts the fact that 1 < k2 < q - 1. 
(ii) Suppose that 1 < s < t and 

q2tm1 + q2t-1k1 + q2t- 2A + +q2A + A 

- q2sm2 + q2s-lk2 + q2s-2A + +q2A + A 

for some m 1, m2EZ andk k2 E {1, 2,. . .,q- }. Then 

q 2s- Ik=q2S(q2t-2Ssm + q2t-2s-lki + + + - M2) 

which would again imply the impossibility that q divides k2. 
Therefore each resubstitution of zeros into Eq. (6) produces a whole new set of 

zeros of pr(n). Since the tth application of this process produces q - 1 residue 
classes mod q2t which are zeros of pr(n) and these are different zeros from the q - 1 
classes produced mod q2S for all s < t, we can inductively see that we have in fact 
accumulated Y>= (q - l)q2Nt-i) (where (q - I)q2(t-i) comes from the q - 1 classes 
mod q21) distinct residue classes mod q2t which are zeros of the function pr(n). 
Hence 

q2 4q q 2t 

Letting t x , we haveSr >,- (q 
- 

1)(q2 -1) Il(q + 1). 0 
In particular, Theorem 1 says that 82 > 1/12, 84 > 1/6, 86 > 1/8, 88 > 1/6, 

8 1/12, 34 > 1/12, 826 > 1/12. These bounds all come from using the smallest 
q > 3 which satisfies r(q + 1) 0 (mod 24). We will now see that we can actually 
allow q to vary for a particular r and obtain a much better bound on the density of 
zeros. 

THEOREM 2. If r 2, 4, 6, 8, 10, 14, 26 and qi is the ith prime greater than 3 with 
r(qi + 1) 0 (mod 24), then 

+r ql+ + max qi + qi j I qj) 
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Remark. Notice that qi -I (mod 24/r) for r = 2, 4, 6, 8 and qi 11 (mod 12) 
for r = 10, 14, 26. By Dirichlet's theorem there are infinitely many such qi for each r, 
and 1y- I l/qj actually diverges as i xo [1] so eventually 

qi + ql qj 

is a negative number. 
Proof of Theorem 2. Let Ai = r(qi -1)/24, Ai = {n I n Ai (mod qi) and pr(n) 

=0}, A = {n I pr(n) = 0}, and 3r(S) =limx inf x 
- 
'nSx;nES 1. 

The proof of Theorem 1 has actually shown that 3r(Ai) > l/(qi + 1). For all N, 
A1 u { U iN 2 [Ai \ U > i (A, n Aj)]) is a disjoint union contained in A, and we have 

Sr= r(A) 3r(A) + E3r Ai \ U (Ain Aj) 

= 3JAI) + 2 Sr(Ai)- Sr[ U (Ai nAj) 

As we have a lower bound for 3r(Ai), we now attempt to find a lower bound for 

-Sr[ U '- '(A, n Aj)]. We have 

Ak n Am= {n|n-/k(mod qk), n Am (mod qm),pr(n) = 0) 

5 {n I n-/\k (mod qk), n Am (mod qm)} 
= {n n- Ak,m (mod qkqm)} 

for some Akim by the Chinese Remainder Theorem. This means Ak n Am is con- 
tained inside one residue class mod qkqm, and so 

Sr U (Ai n Aj) < r(Ai n A1) < 1 

which implies that 

Sr(Ai) -r[ U (Ai n Ai)jaqj1 nqA 2j 

Using this in Eq. (9), we can finally conclude that 

qr1-+l +max 12~q+ 
ar>q, + I N i-2 {(qi + qi J= I qj 

The lower bounds on the density of zeros provided by Theorem 2 are quite an 
improvement over those of Theorem 1, as is illustrated when we compute the partial 
sums 

Mr,N q + (q +lq7 I): 
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TABLE 1 
Lower bounds on 3r from Theorem 2 

r 1 qN Mr,N behavior of 

(bound from Thm. 1) (bound from Thm. 2) Mr,N at N 
2, 10, 14, 26 .083 2560367 .360956 still increasing 

4, 8 .16 85517 .478752 maximun 
6 .125 473887 .484869 maximum 

These values were computed on Ohio State's Amdahl 470 using double-precision 
FORTRAN. 

Finally, we compare these lower bounds on Sr with the actual densities of zeros of 
tabled values of pr(n) [11]. Let Sr,x = x 2n<x;pr(n)=O 1 

TABLE 2 

Densities from tabled zeros 

r x Sr,x 

2 800 .5037 
4 800 .3325 
6 800 .4412 
8 800 .5162 

10 800 .3200 
14 750 .3613 
26 1920 .1969(*) 

(*) this is from a table obtained from M. Newman 

The bounds on Sr given by Theorem 2 exceed these partial densities for r = 4, 6, 
10, 26. In these cases, the zeros must occur more frequently as x -> x. 

I would like to thank Alayne Parson for her encouragement and guidance and 
Marvin Knopp for his suggestion to pursue this topic. 
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